FAQ / Informações

A Trigonometria (trigono: triângulo e metria: medidas) é o ramo da Matemática que estuda a proporção, fixa, entre os comprimentos dos lados de um triângulo retângulo, para os diversos valores de um dos seus ângulos agudos. (Entre estes ângulos, os de 30º, 45º e 60º são denominados ângulos notáveis.) As proporções entre os 3 lados dos triângulos retângulos são denominadas de seno, cosseno, tangente, cotangente, entre várias outras, dependendo dos lados considerados na proporção.

Fonte: pt.wikipedia.org

Já o Círculo Trigonométrico é um recurso criado para facilitar a visualização destas proporções entre os lados dos triângulos retângulos. Ele consiste em uma circunferência orientada de raio unitário, centrada na origem dos 2 eixos de um plano cartesiano ortogonal, ou seja, um plano definido por duas retas perpendiculares entre si, ambas com o valor 0 (zero) no ponto onde elas se cortam. Existem dois sentidos de marcação dos arcos no círculo: o sentido positivo, chamado de anti-horário, que se dá a partir da origem dos arcos até o lado terminal do ângulo correspondente ao arco; e o sentido negativo, ou horário, que se dá no sentido contrário ao anterior.

Fonte: pt.wikipedia.org

Seno

Dado um triângulo retângulo, o seno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.

No círculo trigonométrico, o seno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo vertical.

Como o seno é esta projeção e o raio do círculo trigonométrico é igual a 1, segue que , ou seja, a imagem do seno é o intervalo fechado

Cosseno

Dado um triângulo retângulo, o cosseno de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto adjacente a este ângulo e o comprimento da hipotenusa, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.

No círculo trigonométrico, o cosseno de um ângulo qualquer pode ser visualizado na projeção do seu raio (por definição igual a 1) sobre o eixo horizontal.

Como o cosseno é esta projeção, e o raio do círculo trigonométrico é igual a 1, segue que, , ou seja, a imagem do cosseno é o intervalo fechado

Tangente

Dado um triângulo retângulo, a tangente de um dos seus 2 ângulos agudos é a razão entre o comprimento do cateto oposto a este ângulo e o comprimento do cateto adjacente a ele, calculada, como toda razão, pela divisão de um valor pelo outro, a referência da razão.

No círculo trigonométrico, o valor da tangente de um ângulo qualquer pode ser visualizado na reta vertical que tangencia este círculo no ponto em que ele corta o eixo horizontal do lado direito. Nesta reta tangente ao círculo trigonométrico, o valor da tangente trigonométrica de qualquer ângulo é representado pelo segmento que vai do ponto em que ela corta o eixo horizontal até o ponto em que ela corta a reta que contém o raio do círculo trigonométrico para o ângulo considerado. Para avaliar este valor, deve-se compará-lo com o raio do círculo trigonométrico que, por definição, é igual a 1, de preferência quando este raio se encontra sobre a parte superior do eixo ortogonal vertical. Observe que, enquanto o seno e o cosseno são sempre menores do que o raio do círculo trigonométrico e, portanto, menores do que 1, a tangente trigonométrica pode ser tanto menor quanto maior do que 1.

Fonte: pt.wikipedia.org

O teorema de Pitágoras estabelece que "A soma do quadrado das medidas dos catetos (lados que formam o ângulo de 90°, neste caso c e b) é igual ao quadrado da medida da hipotenusa (lado oposto ao ângulo de 90°, ou a)". Assim: a² = b² + c² . Um corolário desse teorema é que se os dois catetos forem de mesmo tamanho, a hipotenusa vale o produto do cateto pela raiz quadrada de 2.

Fonte: pt.wikipedia.org

Existem diversas aplicações da trigonometria e das funções trigonométricas. Por exemplo, a técnica da triangulação é usada em astronomia para estimar a distância das estrelas próximas; em geografia para estimar distâncias entre divisas e em sistemas de navegação por satélite. As funções seno e cosseno são fundamentais para a teoria das funções periódicas, as quais descrevem as ondas sonoras e luminosas.

Campos que fazem uso da trigonometria ou funções trigonométricas incluem astronomia (especialmente para localização de posições aparentes de objetos celestes, em qual a trigonometria esférica é essencial) e portanto navegação (nos oceanos, em aviões, e no espaço), teoria musical, acústica, óptica, análise de mercado, eletrônica, teoria da probabilidade, estatística, biologia, equipamentos médicos (por exemplo, Tomografia Computadorizada e Ultrassom), farmácia, química, teoria dos números (e portanto criptologia), sismologia, meteorologia, oceanografia, muitas das ciências físicas, solos (inspeção e geodesia), arquitetura, fonética, economia, engenharia, gráficos computadorizados, cartografia, cristalografia e desenvolvimento de jogos.

Fonte: pt.wikipedia.org

Um triângulo retângulo, em geometria, é um triângulo em que um dos ângulos é reto (ou seja, um ângulo de 90 graus). A relação entre os lados e os ângulos de um triângulo retângulo é a base da trigonometria.

O lado oposto ao ângulo reto é chamado de hipotenusa (lado c na figura). Os lados adjacentes ao ângulo reto são chamados de catetos. O lado a pode ser identificado como o lado adjacente ao ângulo e oposto ao ângulo , enquanto o lado b é o lado adjacente ao ângulo e oposto ao ângulo .

Se os comprimentos dos três lados de um triângulo retângulo são inteiros, o triângulo é considerado um triângulo pitagórico e seus comprimentos laterais são coletivamente conhecidos como um triplo pitagórico.

Fonte: pt.wikipedia.org